Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii

نویسندگان

  • Enrique Galindo
  • Carlos Peña
  • Cinthia Núñez
  • Daniel Segura
  • Guadalupe Espín
چکیده

Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model Predicting the Effects of Oscillating Dissolved Oxygen Tension on the Molecular Weight of Alginate by Azotobacter Vinelandii

A semiempirical model that describes and predicts the evolution of alginate mean molecular weight (MMW) produced by Azotobacter vinelandii, from cultures carried out under oscillating dissolved oxygen tension (DOT), was developed. Data from the literature of cultures carried out at constant DOT was used. The model is able to explain that the main effect on the MMW of alginate is linked with the...

متن کامل

Correlation between nitrogen fixation rate and alginate productivity of an indigenous Azotobacter vinelandii from Iran

BACKGROUND AND OBJECTIVES Azotobacter vinelandii, a gamma-proteobacterium, is an obligate aerobic free-living gram-negative soil bacterium capable of fixing nitrogen. Oxygen transfer rate into the cell is reduced by the increase of alginate concentrations during the course of A. vinelandii cultivation. This phenomenon provides a low intracellular oxygen concentration needed for nitrogenase acti...

متن کامل

Modeling Measles Epidemics

Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. On...

متن کامل

Role of alternative sigma factor algU in encystment of Azotobacter vinelandii.

Alginate is essential for encystment in Azotobacter vinelandii. Transcription of the algD gene, which codes for GDP-mannose dehydrogenase, a key enzyme in the alginate biosynthetic pathway, is initiated at two promoters, one of which, p2, has sigmaE consensus sequences. AlgU is the A. vinelandii alternative sigmaE factor. In this study, we constructed an algU mutant (SMU88) which, as expected, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbial Cell Factories

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007